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Abstract: The experience, obtained in the local military conflicts during the past twenty years, shows 

persuasively that the radioelectronic war has great importance for the combat success. Due to this reason, 
the radiocommunication systems, including radars, are high priority targets. After finding of their location they 
are attacked immediately. For their destroying special intelligent rockets are designed. With regard at 
present, the measures, providing high level of secrecy of the radiocommunication systems, are studied 
intensively. 

A promising method for increasing the radiocommunication and radar system secrecy is the applying 
of complex wideband radiosignals. They provide large performance range and high distance resolution. 
Simultaneously, due to the small spectral density of these signals, the discovering of radiosystem is very 
hard. 

With regard to the positive features of the complex wideband radiosignals, our paper is focused on a 
particular class of these signals, named generalized orthogonal complementary codes (GOCCs). Namely, 
we study a method for GOCC applying in the spacecraft based radars. 

 
 

INTRODUCTION 
The experience, obtained in the local military conflicts during the past twenty years, 

shows persuasively that the radioelectronic war has great importance for the combat 
success. Due to this reason, the radiocommunication systems, including radars, are high 
priority targets. After finding of their location they are attacked immediately. For their 
destroying special intelligent rockets are designed. This situation shows that providing high 
level of secrecy has great importance for some military applications [1], especially for the 
radars, including these based on spacecrafts. 

As known, military radars comprise two subsystems, named primary and secondary 
radar respectively. The primary radar is used for discovering of targets, measurement of 
their coordinates and for following of their trajectories (“tracking”). The most primary radars 
work as “active-passive” systems. The active operation is the sending by radar transmitter 
series of powerful electromagnetic pulses. The passive operation is scattering by targets 
the small part of power of the sent pulses, which returns to the radar receiver. The 
secondary radars are assigned for solving of a particular but very important military 
problem – dividing the observed objects in two main classes, named “friend” and “foe”. 
Due to the significance of the target identification, the secondary radars are “active-active” 
systems. It means that our (friend) targets have a transmitter, which is activated by the 
pulses, sent by observing radars. As a result the targets return the so-named “responses”, 
which are messages, containing special coded data. This data is verified in the secondary 
radar receivers and if it matches to a “pattern”, it is decided that target is “friend”. 
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Otherwise, the decision is “foe”. Despite of great importance of “friend or foe” identification 
(IFF), the responses of our objects could disclose their positions. Consequently, the 
providing high level of secrecy of the secondary radars has a crucial role on the battle 
field. 

A promising method for increasing the radiocommunication and radar system secrecy 
is the applying of complex wideband radiosignals. They provide large performance range 
and high distance resolution. Simultaneously, due to the small spectral density of these 
signals, the discovering of radiosystem is very hard. With regard at present, the measures, 
providing high level of secrecy of the radiocommunication systems, are studied intensively. 

At present a great number of complex wideband radiosignals are proposed and used 
in practice. Nevertheless, it ought to emphasize that the employment so-named 
multicarrier direct-sequence code-division multiple access (DS-CDMA) [2] leads to 
significant improvement of radiocommunication system secrecy. In the DS-CDMA 
approach each of the carrier frequencies in a multicarrier system is multiplied by a 
spreading sequence unique to each user. This technique in a comparison with all other 
wideband approaches demonstrates a number of desirable features, including narrow-
band interference suppression and a lower required chip rate than that of a single-carrier 
system occupying the same total bandwidth. The lower required chip rate is a result of the 
fact that the entire bandwidth is divided equally among frequency bands. This also allows 
the receiver to incorporate parallelized signal processing, with each of the parallel 
branches having a much lower computational load than that of a single serial processor for 
a single-carrier system occupying the same bandwidth. In addition, it is easier to 
implement the parallel receiver architecture of a number of carriers than a larger order 
RAKE [2]. 

With regard to the positive features of the multicarrier DS-CDMA utilizes complex 
wideband radiosignals, our paper is focused on a particular class of these signals, named 
generalized orthogonal complementary codes (GOCCs). Namely, we study a method for 
GOCCs applying in the spacecraft based radars. 

Our paper is organized as follows. First, the basics of GOCCs are recalled. After that 
an algebraic method for synthesis of GOCCs is proved. Finally, the advantages and 
possible areas of application of our method in the spacecraft based radars are discussed. 
 

A METHOD OF GENERALIZED ORTHOGONAL COMPLEMENTARY CODES 
APPLYING IN SPACE BASED RADARS 

As mentioned above, the secondary radars form a dynamic multiuser 
radiocommunication system which must possess simultaneously significant level of 
secrecy, high rate of information transfer and great reliability. Satisfying of these 
requirements is a hard technical problem. By our opinion it could be solved by applying of 
GOCCs in the secondary radars. With regard the basics of GOCCs will be given in the 
beginning of this section of our paper. 

The main idea of the GOCC is assigning a unique set (family) of distinct spreading 
sequences to each user in a multicarrier DS-CDMA system [2], [3]. So the GOCC can be 
viewed as a set of N families, where every family contains M sequences and every 
sequence comprises n complex number with absolute value 1. The elements of the 
sequences describe mathematically the phase manipulation of elementary phase pulses 
(chips). The families of sequences have the unique ability to eliminate the multiple-access 
interference (MAI) in asynchronous multicarrier DS-CDMA systems. The reduction in MAI 
minimizes the effect of the near–far problem, as well as other MAI-induced errors. 
Therefore, the proposed system can support more users for a fixed-error probability 
constraint. Furthermore, the autocorrelation sidelobes are canceled. As a result 
information symbols may be packet more closely together, which increases the data rate 
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achievable by a single user [2], [3]. The proposed system does have some disadvantages. 
One disadvantage is that the system is not as resistant to frequency-selective fading, as all 
frequency components are important for effective reduction of autocorrelation sidelobes, 
and it is this reduction that allows for individual users to signal at a higher data rate. 
However, even with this disadvantage, the system appears well suited to certain types of 
communication channels, such as stable phase-coherent channels, or Rician channels 
with a strong line-of-sight (LOS) path, where the effects of frequency-selective fading are 
minimal. 

In a DS-CDMA system it is desirable the autocorrelation of spreading sequences to 
be zero for all nonzero shifts. While it is not possible to construct a single binary sequence 
of values  having an (aperiodic) autocorrelation function equal to zero for all 
nonzero shifts, it is possible to construct two such sequences whose autocorrelation 
functions, when coherently added, result in a function having value zero for nonzero shifts. 
An example of such a pair of sequences is the Golay sequences [4]. With regard we shall 
recall the following definition. 

}1,1{ +−

Definition: An orthogonal complementary code (OCC) is a set of N families, where 
every family comprises M sequences { }  so that: M...,,2,1k,)j( n

0jk =ζ =

- the aggregated aperiodic autocorrelation function (ACF) of all sequences in an 
arbitrary family has only main lobe without any side lobes (i.e. it exhibits the so-named 
“thumbtack” shape); 

- the aperiodic aggregated cross-correlation function (CCF) between corresponding 
sequences of any two distinct families remains low throughout. 

Often it is said that the families of an OCC are “mutually orthogonal” (MO). 
MAI in a DS-CDMA system mainly results from nonzero cross correlation between 

the intended user’s spreading sequence and an unintended user’s spreading sequence 
when matched filtering is used. In fact, for maximal connected sets of m-sequences or 
Gold sequences of length L , the peak cross correlation magnitude is 1 . 
This too points to the possibility of reducing MAI using a set of multiple spreading 
sequences per user in the multicarrier DS-CDMA system. 

12n −=  2/)2n(2 ++

At present two methods for synthesis of orthogonal complementary codes (OCCs) 
are known. First of them utilizes an arbitrary Hadamard matrix in order to create the 
families of an OCC. The second one, introduced by Tseng and Liu, is based on 
complementary pairs, invented by Golay [4], [5]. 

An important shortcoming of the classical approaches to design of the OCCs is usage 
of only binary manipulation, which restricts the information rate transfer and the flexibility of 
the radiocommunication system. With regard we shall generalize the classical Tseng and 
Liu’s method for synthesis of OCCs [5] so that arbitrary phase modulation to be possible. 
Our generalization is based on the following theorems. 

Theorem 1: Let A be a vector-column, which entries are M complementary 
sequences, i.e.: 
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where the upper index “T” means “transposition” and M is an even number. Then the 
vector-columns A and B, where B is defined by: 
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form a GOCC with  families. Here the symbols “*” and “ ” in (2) mean “complex 
conjugation” and “reverting of the order of the sequence”. 

2N = }0
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Proof: In contrast with classical method for synthesis of OCCs, where only binary 
phase modulation (or binary phase shift keying (BPSK)) is applied, we shall examine the 
common case. This means that arbitrary m-ary ( ) phase manipulation (or MPSK) is 
possible and consequently the elements of the sequences of an GOCC are m-th roots of 
the unity: 
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This generalization makes the Tseng and Liu’s method inapplicable, because it deals with 
odd (i.e. ( ) and even (i.e. ( ) pairs. Due to this reason 
we shall use of the so-named “method of formal polynomials (or formal power sums of a 
single variable)” [6]. According to this method, the values of the ACF of any sequence of 
the matrix B are the coefficients of the polynomial product: 
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The polynomial (9) can be transformed as follows: 

 
[ ]

[ ] .)x(F.x)0(x).1(...x).1n(x

)1n(x).2n(...x).0()x(F~

1
k

1n
k

1
k

)1n(
k

1n
kk

1n
kk

−−−−−−

−

±=ζ±ζ±±−ζ±=

=−ζ±−ζ±±ζ±=

[ ]  (11) 

Here: 
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It can be analogously shown that: 
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From (11) and (13) it is straightforward that: 
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Consequently, the aggregated ACF of the sequences of the vector-column B has values 
which are coefficients of the sum: 
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Now it should be noted that the aggregated ACF of the sequences of the vector-column A 
has values which are coefficients of the sum 
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According to complementary property of the sequences of the vector-column A their 
aggregated ACF has thumbtack shape (i.e. it has only a main lobe and does not have any 
side lobes), which means that: 
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Consequently: 
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which shows that the sequences of the vector-column B possess the complementary 
property also. 

Now, in order to prove Theorem 1 it is necessary to demonstrate that aggregated 
CCF of the corresponding sequences of the vector-columns A and B is zero everywhere. 

According to method of formal polynomials, the values of the aggregated CCF of the 
corresponding sequences of the vector-columns A and B are the coefficients of the 
polynomial product: 
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From (11) it follows that: 
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The accounting of (20) in (19) shows: 
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which proves that aggregated CCF of the corresponding sequences of the vector-columns 
A and B is zero everywhere. 

In order to finish the proof of Theorem 1 it is enough to see that the M  matrix C: 2×

  (22) [ BAC = ]
which first and second columns are the vectors A and B respectively is a  GOCC, 
containing  families. 2N =

The importance of Theorem 1 follows from the fact that it gives an algorithm for 
creating of an “initial” GOCC with N  families. This algorithm is very effective because 
at present several methods for synthesis of families of complementary sequences are 
known. 

2=

Now we shall state the following Theorem 2 which gives a general algorithm for 
building of a new GOCC with 2N families if a GOCC with N families is known. 

Theorem 2: Let C be a  matrix so that: NM ×

- its columns CC  contain the sequences with equal length n: s
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- its columns CC  are families of MO sequences. s

Then the derivative matrix: 
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is a GOCC with 2N families and every family has 2M sequences. Here the symbol “ ” 
means “interleaving of the elements of every column of the matrix C”: 

⊗

  (25) 
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The proof will be omitted because it can be done by arguments, analogous to these, 

used above. 
 

CONCLUSIONS 
In this paper, we generalize the classical technique for multicarrier DS-CDMA that 

employs a set of spreading sequences for each user. The phase manipulation of the 
sequences can be arbitrary in contrast with classical approach which utilizes only binary 
manipulation. This result is obtained by proving a general method for GOCC synthesis. It 
consists of two steps: 

- creating “initial” GOCC with N  families from a known family of complementary 
sequences; 

2=

- building of a new GOCC with 2N families from a base GOCC with N families. 
Our method could be very useful in the design of the modern secondary radars 

because the usage of the GOCCs enables to eliminate MAI caused by simultaneous 
responses of our objects on the battle field. Moreover the data rate and capacity of all 
radar system can be significantly increased. 
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